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The variational-transition-state theory (VTST) approach to condensed-phase activated-rate pro-

cesses is extended to include bent planar dividing surfaces.

This allows removal of formal diver-

gences which arise when applying VTST, based on simple planar dividing surfaces, to unrestricted
potentials. Practical applications are demonstrated for the cubic and strongly asymmetric quartic

potentials.
PACS number(s): 05.40.+j

I. INTRODUCTION

In his seminal paper of 1940 on activated-rate processes
[1], Kramers considered the escape rate of a one dimen-
sional particle with coordinate g trapped in a metastable
potential well of a potential function V(g). The dynam-
ics of the particle is described by a Langevin equation in
which it experiences a frictional force characterized by a
damping constant v and an external Gaussian Markoffian
random force. The particle can escape from the well by
crossing a potential barrier. When the damping is weak,
Kramers showed that the escape rate is limited by the
rate of transfer of energy to the particle from the heat
bath and so is proportional to the damping. When the
damping is moderate or strong, the process is limited by
the spatial rate of passage of the particle across the bar-
rier [2,3] In this paper we will consider the dynamics in
this so called spatial diffusion limit.

Kramers’s one dimensional problem may be general-
ized by introducing memory friction. Instead of the
Langevin equation of motion, one may consider a gen-
eralized Langevin equation (GLE) in which the friction
function is no longer Markoffian. The effect of memory
friction on activated-rate processes has been studied ex-
tensively during the past decade [3,4]. Grote and Hynes
[5] generalized Kramers’s expression for the rate in the
spatial diffusion limit. They pointed out that the rate for
spatial diffusion across a barrier is a function of frequency
dependent friction and is determined by the component
of the friction at the barrier frequency rather than the
static friction as in Kramers’ original theory.

A further refinement of Kramers theory may be ob-
tained by introducing also a space dependent friction.
The equation of motion, as derived first by Lindenberg
and co-workers [6,7] is substantially more complex look-
ing than the GLE. Nevertheless, Carmeli and Nitzan [8]
derived an expression for the rate in the energy diffu-
sion limited regime in the presence of space dependent
friction.
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This sums up the state of affairs as of the middle of
the 1980s. The dominant theoretical approach was based
primarily on a steepest descent estimate for the rate,
which is identical to considering only the dynamics of
the parabolic vicinity of the potential barrier. During the
past few years it has become evident that the Kramers-
Grote-Hynes theory may be insufficient. One failing is
related to memory friction. For long memory, there will
be an intermediate range of damping values, for which the
motion across the barrier occurs on a time scale which
is similar to the memory time. When this occurs, and
the nonlinearity of the potential is not negligibly small,
the particle will remember the nonlinearity and one may
observe rate suppression [9.10]. The magnitude of the
nonlinearity is controlled by the temperature in terms of

the reduced barrier helght

A different mechanism wﬁlch may lead to deviations
from the parabolic barrier limit has to do with spatial
dependent friction. If the friction is much larger away
from the barrier then one should expect that the effec-
tive friction is larger than used in the standard theory
and the rate would be suppressed. In the presence of
memory friction the effect may be stronger, since the par-
ticle will remember the larger damping strength exerted
upon it as it moves along the barrier. Deviations from
the Kramers-Grote-Hynes limit induced by memory and
space dependent friction have been recently observed in
numerical simulations by Voth and co-workers [11,12].

In recent years we have introduced the variational-
transition-state theory (VTST) approach to activated-
rate processes in the spatial diffusion limit [13-15]. In-
stead of dealing with a stochastic differential equation,
one may recast the GLE in terms of a Hamiltonian in
which the system is coupled to a harmonic bath [16,17].
The dynamics of the GLE may be represented as the
continuum limit of the Hamiltonian dynamics.

Transition-state theory (TST) [18,19], which is appli-
cable to Hamiltonian systems, provides an upper bound
[20] to the decay rate by considering the unidirectional
flux across a dividing surface between “reactants” and
“products.” TST is exact if the particle does not recross
the dividing surface. Otherwise, it gives an upper bound
to the rate, since any recrossing is counted as a reactive
event. By varying the dividing surface one may find a
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minimal upper bound, hence the name variational tran-
sition state theory.

In general, especially for a system as complicated as
the Hamiltonian equivalent of the GLE, one might ex-
pect that the variational procedure is rather cumbersome
and difficult. We have shown though that substantial
progress may be achieved by optimizing a planar divid-
ing surface in the full configuration space of the system
and the bath [21,22]. For highi barriers, such an optimiza-
tion reduces to the Kramers-Grote-Hynes theory. In the
presence of nonlinearity, optimized planar dividing sur-
faces account correctly for the effects of memory [10] and
space dependent friction [23]

Thus far though, most applications of the optimized
planar dividing surface VTST were restricted to sym-
metric potentials. The asymmetric case is in fact much
more interesting since here one will also find a shift of the
dividing surface away from the barrier top [22]. The main
obstacle in dealing with asymmetric systems may be un-
derstood by considering the extreme asymmetric cubic
potential. In this case, strictly speaking, any planar di-
viding surface which is not perpendicular to the particle
coordinate ¢ will give an infinite upper bound because
of nonphysical contributions to the flux from very large
values of ¢. This raises the question of whether it is
still possible to retain the power of the optimized planar
dividing surface approach for the class of metastable po-
tentials which is unbounded from below. The main pur-
pose of the present paper is to further extend the optimal
planar dividing surface approach to this general class of
potentials. This will also allow us to justify our previ-
ous use [22,24] of a perturbation expansion of the rate
expression in terms of the inverse reduced barrier height
although in principle, the expansion may be divergent.

The extension is based on the observation that if the
planar dividing surface is perpendicular to the particle
coordinate then the divergence is removed. A straightfor-
ward extension of the optimized planar dividing surface
is to allow for a bent dividing surface which is composed
of two planes. For almost all values of the particle coordi-
nate one uses the usual planar dividing surface. However,
when the particle coordinate becomes larger than some
value denoted as gg, one bends the surface so that it be-
comes perpendicular to ¢. This added “kink parameter”
becomes a variational parameter and one can uniquely
determine the optimal place at which the kink should be
introduced.

In Sec. II we review briefly the optimized planar di-
viding surface approach and introduce the bent dividing
surface. Practical application to cubic and asymmetric
quartic potentials is presented in Secs. III and IV. We
end with a discussion of the practical implications when
dealing with more complicated systems.

II. OPTIMAL BENT PLANAR DIVIDING
SURFACES

A. Planar dividing surfaces

The GLE for a one dimensional system is of the form

av(q)

i+ 52+ [ arae—nitn) = €.

(2.1)

Here, g is the (mass weighted) system coordinate and
V(q) is the system potential. The Gaussian random force
&(t) is related to the friction kernel y(t) through the sec-
ond fluctuation dissipation theorem: (£(¢)§(0)) = %'y(t)
and we use the notation ﬂzﬁ throughout this paper.

The dynamics of the GLE (2.1) is equivalent to the
dynamics of the system bath Hamiltonian 16, 17]

H= %‘3 +V(g) + 2,: % [Pij + (“’J"”f - %)2] - (22)

where the system coordinate g is coupled bilinearly to
a bath of harmonic oscillators with frequencies w;. The
summation is in principle over an infinite set of bath os-
cillators which tends towards a continuum. The bath
coordinates x; are mass weighted. By explicit solution
for the time dependence of each of the bath coordinates,
one can show that Hamilton’s equations of motion for the
system coordinate g reduce to the GLE (2.1), with the
identification that

2

() = Z %cos(wjt).

j J

(2.3)

Transition state theory gives the escape rate as a ratio
of the equilibrium unidirectional flux to the equilibrium
population of reactants [18, 19, 25]:

o _ Jdpedall; dpe, dz;8()(V£-P)O(V S P)e2H
fdpqdq H]‘ dP:j dmjo(—f)e—ﬁH

(2.4)

The Dirac delta function §(f) localizes the integration
onto the dividing surface f = 0. The gradient of the
surface (Vf) is in the full phase space, p is the gener-
alized velocity vector in phase space with components
4,Pq[(%j,P=;),5 = 1,..., N] and 6(y) is the unit step func-
tion which chooses the flux in one direction only. The
term Vf - p is proportional to the velocity perpendicular
to the dividing surface. The TST expression is an upper
bound for the rate. VTST is obtained by varying the di-
viding surface f looking for that dividing surface which
gives the least upper bound.

The choice for the transition state implicit in
Kramers’s paper is the barrier top (¢ = 0) of the po-
tential V(g). In this case the dividing surface takes the
form f = ¢ = 0 and the rate expression (2.4) reduces to
the well known one dimensional result:

-8V (0)
S ~Yag-avi (g5
Jdgb(—q)e=FVD ™2

Fip = (Zﬁﬂ)_%

where w, is the frequency at the bottom of the well.
The Kramers-Grote-Hynes expression for the rate may
be derived from the TST formulation by noting Ehat for
a purely parabolic barrier [V(q) = V(0) — %wi q?] the
Hamiltonian (2.2) is a bilinear form which may be di-
agonalized using a normal mode transformation [13]. In
the diagonal form, one finds one unstable mode, denoted

p, with associated barrier frequency, denoted /\zo and N
stable modes. The oo subscript will serve to remind us
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that this is the solution for the purely parabolic barrier,
or equivalently for an infinite reduced barrier height. The

normal mode barrier frequency (/\zo) is the solution of the
equation
2 1
W =t (1 + (/\m)> 7
AL
where 4(s) denotes the Laplace transform of the friction
kernel with frequency s. The rate may now be obtained
by choosing the dividing surface f = p = 0. The result is
the usual Kramers-Grote-Hynes result [1,5] for the spatial
diffusion limit:
AL
e = _FID

w

(2.6)

(2.7)

Note that the Kramers-Grote-Hynes solution has been
obtained by replacing the one dimensional dividing sur-
face f = ¢ = 0 by a dividing surface in the full space
of system and bath, f = p = wugoq + ZJ. ug;jc; = 0,
where the u;;’s are elements of the orthogonal normal
mode transformation matrix. To obtain a generalization
of this approach, in the presence of a finite reduced bar-

rier height (ﬂVi) we pose the following question: what is
the optimal planar dividing surface? The most general
planar dividing surface (in configuration space) may be
written as

f:aoq-i-Zajxj—po:O, (2.8)
Jj
where pg denotes the distance of the dividing surface from
the origin and ag,a;,j = 1,...,IN are the components
of the unit vector perpendicular to the dividing surface.
A generalization of the Kramers-Grote-Hynes theory, is
obtained by minimizing the TST expression for the rate
with respect to the coefficients ag,a;,7 = 1,..., N and the
shift po. The details are given explicitly in Ref. [22]; here
we summarize the results needed to apply the theory.
The optimized estimate for the rate is

pa?

o )§ /_m dgexp[—BVer(g,p0)] »  (2.9)

Aol

where the effective potential has the form
Vet(a,0) = 3A%(Cq—p)* +V(g) = V(0) . (2.10)
The optimized effective frequency A and coupling con-

stant C are expressed in terms of the temperature depen-

dent effective barrier frequency Al through the following
relations:
-1

2 1?
2 _ a; _ A
A% = Ej —wf- el 1" (2.11)
_ a;C; _ 'AY(AI)
C=ao+ Ej ———wjz = ao(l + ¥ ) . (2.12)

In this last expression the projection ag of the system
coordinate q onto the direction perpendicular to the di-
viding surface may also be expressed in terms of the bar-

rier frequency Al by using the normalization condition
for the transformation coefficients:
)]
s=af

(2.13)

o 1 53
o1 (0

J

The effective barrier frequency ()\i) is now determined
by a generalization of the Kramers-Grote-Hynes equation
(2.6):

1 TN
A2C? — ————— =)\t (14 52 2.14
samwn Y () ew
where we have used the notation
n _P"
(q >=70 : (2.15)

ﬂAz / dqq"exp[—f[Ves (g, p0)] - (2.16)

Finally the shift parameter is determined by the equation

po = C(q)

from which it is clear that for a symmetric potential a
solution for the shift parameter is pg = 0.

Equation (2.14) for the barrier frequency At and (2.17)
for the shift po must be solved simultaneously. Then, one
can find the parameters A and C necessary to evaluate
the optimized rate. In practice, instead of solving the
transcendental equations for the optimized barrier fre-
quency (2.14) and the shift (2.17) one may minimize the
expression for the transmission probability (2.9) directly.
Since the dependence of the parameters A and C on the

barrier frequency A} is known [cf. Egs. (2.11)—(2.13)],
one may think of the transmission probability Py given
in Eq. (2.9) as a function of the two independent vari-

(2.17)

ables )\i, po and minimize the function numerically. For a
symmetric potential this procedure is even simpler, since
there is no shift (po = 0). The transmission probability

is a function of one variable only (/\1), and one need only
find its minimum.

B. Bent planar dividing surfaces

Inspection of the result for the transmission coeffi-
cient through a planar dividing surface [Egs. (2.9),(2.10)]
shows immediately that for a cubic potential the trans-
mission coefficient will diverge. This divergence is not re-
stricted to cubic potentials, it will occur in principle, for
any potential which does not go to +o0o when ¢ — +oo.
On the other hand, the flux through the dividing sur-
face will not diverge for any dividing surface of the form
f = q — qgo. To circumvent the divergence we will use a
bent planar dividing surface.

To introduce the kink we define two perpendicular co-
ordinates
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p = apq+ Z a;x; , (2.18)
j
oc=arq— g% ;a,-a:j , (2.19)
such that
q = agp + ajo, (2.20)
where we have used the shorthand notation
a3 =1-d (2.21)

At this point, the effective potential Veg(g,po) [cf. Eq.
(2.10)] may be thought of as a function of the two inde-
pendent variables p and o. The bent dividing surface is
then defined in the (p, o) plane and consists of two parts.
Without loss of generality, we assume that the potential
V(q) goes to +oo as ¢ — Foo, respectively. For q < qq,
where go denotes the “kink” point, the dividing surface
takes the usual form f = p— po [cf. Eq. (2.8)]. The kink
point go defines a point pg, 00 in the (p,o) plane, such
that the bent dividing surface has the form (see Fig. 1
below)

_Jp—po, ifa<op
f_{q—qo, ifo > 09, (2.22)
where
do = @opo + aroo- (2.23)

Insertion of this form for the dividing surface into the
TST rate expression (2.4) and normalizing by the one
dimensional rate [Eq. (2.5)] gives a modified expression
for the transmission coefficient (see Appendix A for the
detailed derivation):

2 % do
Py = (ﬂz_‘jr_) (/_ dg exp[—[Ver(q, po)]

+/po dpexp[-—ﬂv::tf((IO,P)]) .

— o0

(2.24)

The two terms in this expression correspond to two con-
tributions to the outgoing flux. The first term gives the
flux in the p direction. This is the usual contribution
to the flux obtained from the planar dividing surface
f = p— po in the region ¢ < gg. The second term gives
the contribution in the ¢ direction and comes from that
part of the dividing surface in which f = ¢—gqo (00 > 09);
see Fig. 1 below. The dependence of the frequency A
and coupling constant C' on the transformation coeffi-
cients remains as for the usual planar dividing surface;
see the first equalities in Eqgs. (2.11) and (2.12).
Equation (2.24) is the central formal result of this pa-
per. One notes that at this point the divergence has been
removed. The contribution of the second term in the out-
going flux due to the kink is of order e ~#Vess(20:20)  If the
kink is not too close to the barrier top this will give an
exponentially small correction. It is thus not surprising
that a perturbation expansion for the rate which is based
on a planar dividing surface will give a good estimate,

even though strictly speaking, the expansion is divergent

unless one introduces the kink. The leading term in an

expansion in terms of the inverse barrier height (——l—f)
2%

will remain the same, whether one does or does not in-
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FIG. 1. Optimized bent dividing surfaces for the cubic

potential and Ohmic friction. The reduced barrier height is
,BV1 = 1. Solid lines are equipotential lines at the positive re-
duced energies (in units of ﬂVI) 0,3,6,9, ...; dashed lines are
negative energy contours at —3, —6,.... The heavy solid lines
are the optimized dividing surfaces. The dotted line that goes
through the origin (p = o = 0) is the ¢ axis and the dotted
line perpendicular to it crosses the g axis at the kink point
g = go. The cross denotes the location of the well whose re-
duced energy is —1. Panels (a)—(c) are for x = 1.1,1.75,1.999,
respectively, corresponding to the reduced damping values
a = 0.1,1.1,22.3, respectively. The three cases cover the
weak, intermediate, and strong damping cases.
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troduce the kink in the dividing surface to remove the
divergence.

Optimizing the transmission coefficient with respect to
the a;’s leads to the same equations as before, that is the
frequency A, the coupling constant C and the coefficient
ao are all expressed in terms of the Laplace transform
of the time dependent friction and the effective barrier

frequency At as in the second equalities of Eqgs. (2.11)-
(2.13). At this point, the transmission coefficient is a

function of three variables Py = PO(AI, P0,90)-

It is possible to simplify the computation by explicit
variation of the transmission probability with respect to
the kink parameter. One finds (after an integration by
parts)

90 1 _c-_pg¥\9
926 P~

9=90

oo
) / dye PACaopolyt3v’l = o . (2.25)
0
In this equation one may treat the variable Cqo—po which
appears in the integrand as an independent parameter
instead of pg, such that one is left with an equation for
the kink parameter go in terms of the other variables.
This is especially useful for a cubic potential for which
the equation is quadratic and thus easy to solve (cf. Sec.
ITI). One then remains with a minimization with respect
to two variables, which may be carried out numerically.

It is also possible to obtain an asymptotic (C' >> 1)
solution to Eq. (2.25) for the kink point go. The leading
order term in such an expansion is obtained by ignoring
the term %yz in the exponent of the integrand in Eq.
(2.25). The solution for the kink point obtained in this
way is identical to finding a maximum of the effective
potential Vg (g, po); cf. Eq. (2.10). From the structure
of the potential V(q) one knows that V.g(g) —» +oo as
g — Foo, respectively. One also expects that the effective
potential will have a minimum at some value of ¢, which
will be separated from the asymptotic limit of —co by
a maximum. If the maximum and minimum are well
separated, then the asymptotic estimate for go as the
maximum will usually be very good, and in addition,
the kink term will contribute only an exponentially small
term to the flux.

In summary, we have shown that introduction of a bent
dividing surface will remove in principle any divergence
which may result from a potential which does not become
infinitely high as ¢ — +o0o. All that happens is that one
must introduce an additional variational parameter g
which is the location of the kink in the dividing surface.
In the next section we will consider the example of the
cubic potential in some detail.

III. APPLICATION TO A CUBIC POTENTIAL

In this section we demonstrate a bent planar dividing
surface for the case of Ohmic friction;

7(t) = 245(2)

and the cubic potential:

(3.1)

q

1 2
V(g)=V(0) - —ot ¢?(1+ 1), 3.2
@=Vv(©0) -zt (1+ 1) (3:2)
where ¢; is the characteristic length. The well bottom
is located at ¢ = —%ql and the barrier height is vi=
2
Zuwt'gl.

As already mentioned in the preceding section, for
the cubic potential it is convenient to consider the vari-
ables /\1, p1 = Cqo — po and qp as the independent vari-
ables, instead of )\I,po,qo. This allows one to use Eq.
(2.25) to determine gq as a function of A} and p1 so that
Qo = qo()\i, p1). Then po may be extracted from the def-
inition of the variable p;, so that at this point, the trans-
mission coefficient is also a function of only two variables
P = Po()\i,pl). The remaining minimization is done
numerically.

We have studied in detail the case of a low barrier
ﬁV1 = 1, since this example has also been studied pre-
viously in Refs. [10,26]. In the case of Ohmic friction
[v(t) = 2v4(2)], Egs. (2.11)—(2.13) take the form

3
af
=2y 2 (3.3)
2l 2t
v\ g
c=(1+—") "|1+%|; 3.4
(o) i 3 @
-1
2 v
= (14— . 3.5
Qg I: 2/\1} (3.5)
To simplify, we use the dimensionless variable a = —%
2w
and the “nonlinearity parameter” (cf. Ref. [9])
=14+ -— 3.6)
X 7o)} (

which varies in the range (1, 2) as the dimensionless fric-
tion constant « varies in the range (0, 00).

Optimal bent planar dividing surfaces are shown in
Fig. 1 for three values of a. The contours are the
equipotential lines of the effective potential Veg(q =
app +ayo, po); cf. Eq. (2.10). The three panels in Fig. 1
are for the values x = 1.1,1.75, and 1.999, which corre-
spond to a = 0.1,1.1, and 22.3, respectively. These are
typical of weak damping, intermediate and strong damp-
ing, respectively.

Figure 1 demonstrates three properties of the opti-
mized dividing surface. As the damping varies from weak
to strong, one finds that (1) the angle between the p and
g axes increases from 0 to Z; (2) the location of the kink
point go varies from go = 4 for v = 0 to go = %[1+\/%]q1
as 7 — 00, as shown analytically in Appendix B; and (3)
the shift po increases its absolute value with increasing
damping. The optimal dividing surface moves from the
barrier top (pp = 0, for v = 0) towards the direction of
the well of the cubic potential. This qualitative result is
in agreement with the asymptotic estimates for the shift
presented in Ref. [22].
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It is of interest to compare the transmission coefficient
obtained from optimization of the bent planar dividing
surface with previous estimates for the rates. These in-
clude (a) Kramers’ expression [1]

Pk =(1+0?)i —a, (3.7)

which is based on a steepest descent estimate for the rate
at the barrier top, valid in principle only for ,BV-1t >>1;
and (b) the curved dividing surface canonical VTST of
Ref. [9], in which one uses the normal modes of the
parabolic barrier Hamiltonian to construct an effective
free energy Hamiltonian in two degrees of freedom. The
optimal curved dividing surface is found as an infinite
period orbit dividing surface of the effective Hamiltonian.
The comparison is given is Table I. The striking result is
the closeness of all three methods. It is evident, that even
though the barrier is low, in the case of Ohmic friction,
the simple steepest descent estimate of Kramers suffices
for numerical purposes.

It is also evident that the two variational TST ap-
proaches are very similar. Here we note though that the
present approach could be further improved. One can use
the optimized bent planar dividing surface to construct
the effective two-degree-of-freedom Hamiltonian

Hzp = %(P,z, +p2) + Ve (¢ = aop + a10,p0) , (3.8)
where the effective potential V.g is the same as given in
Eq. (2.10). The improved estimate is then obtained by
finding the infinite period orbit dividing surface on this
effective Hamiltonian. However, for the case of Ohmic
friction studied in this paper, the added effort is not
worthwhile.

IV. THE ASYMMETRIC QUARTIC POTENTIAL

The cubic potential considered in the preceeding sec-
tion is an extreme case of asymmetry between the reac-
tant and product wells. The usual more realistic case of
a finite energy difference between reactants and products
is better represented by the asymmetric quartic potential

TABLE I. Transmissionu probability for the cubic potential.
a,b c . d,

1.1 0.1 0.999 1.001 1x 107¢

1.75 1.1 0.967 1.003 0.001445

1.999 22.3 0.996 0.993 0.00000

®Typt is the estimate based on the optimal bent planar divid-
ing surface, Eq. (2.24).

bl"K, is the Kramers estimate for the rate.

“T'rp is the estimate based on the curved dividing surfaces of
Ref. [9].

44, is the flux through the part of the bent dividing surface
for which f = q — qo-

®jp is the flux through the part of the bent dividing surface
for which f = p — po.

1 42 5 2q4 —q- 1 -1 2
V = —— [1 —_—g — — — ] .
(9) W +3 PR q 2(Q+q ) g

(4.1)

In this form, the potential barrier is at the origin (¢ = 0).
The left well has a minimum at the point —g_, while the
right well has a minimum at ¢4 and ¢g—,q+ > 0. The
potential is drawn schematically in Fig. 2. The well
depths may be denoted V_, V for the left and right wells,
respectively, and one finds that

2+ as
V=V gl —>= 4.2
where the ratio ¢.s = % measures the asymmetry of

the potential. When g,s = 1 the potential is symmetric,
when g, — 0o one recovers the cubic potential of Sec.
III. Without loss of generality, we will only consider cases
for which ga; > 1 such that the right well is deeper than
the left well and we are estimating the escape rate of the
particle from left to right.

For a purely planar dividing surface, the cubic poten-
tial gives a divergent upper bound, but the quartic po-
tential, because of the ¢* term will always give a finite
result. The introduction of a kink into the planar divid-
ing surface becomes important for the quartic potential
only if it leads to an essential improvement over the pla-
nar dividing surface.

In Fig. 3, we compare the results for the quartic po-
tential which are obtained by using a planar dividing sur-
face, with those obtained in the cubic case using a bent
dividing surface. The reduced barrier height is BV_ =5
and the asymmetry in the quartic potential is ga.s = 10.
This corresponds to BV, ~ 3 x 103. As may be seen from
the figure, for any value of the damping, the introduction
of a kink in the dividing surface will not lead to an es-
sential improvement in the estimate for the transmission
probability. It is of interest to note though that both the
shift and the optimized barrier frequency are somewhat
different, however, the differences almost disappear by

V(q)

FIG. 2. Schematic drawing of the asymmetric quartic po-
tential [cf. Eq. 4.1].
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FIG. 3. Optimized results for the asymmetric quartic po-
tential. The barrier height is SV_ = 5 and the right well
is much deeper than the left well (V4 /V_ ~ 600). Results
for the quartic potential, based on an optimized planar divid-
ing surface, are presented as ratios to optimized results for
a cubic potential with the same barrier height. Panels (a)-
(c) correspond to the optimized shift, barrier frequency, and
transmission probability, respectively.

the time one considers the probability. From a practical
point of view, we conclude that, for most purposes, when
considering a quartic asymmetric potential or a potential
similar to it, one can limit oneself to the easier problem
of a planar dividing surface.

V. DISCUSSION

In this paper we have explored the application of
variational-transition-state theory to extremely asym-
metric activated-rate processes. From the formal point
of view, we have shown that one can generalize the class
of optimized planar dividing surfaces by introducing a
kink, which leads to good estimates for the rate even
in the case of a purely cubic potential. Introduction of
the kink shows explicitly why one can use a steepest de-
scent expansion for the shift, optimized barrier frequency
and transmission coefficient as in Ref. [22] even though
strictly speaking the planar dividing surface gives an in-
finite upper bound. We have seen that the kink will usu-
ally introduce corrections which are exponentially small,
which are justifiably neglected in the steepest descent ex-

pansion which considers much larger terms which are of

the order of (ﬂVI)‘".

From the practical point of view, we have demon-
strated explicitly that in asymmetric cases, there may
be a substantial shift of the optimized planar dividing
surface away from the top of the barrier. The magni-
tude of the shift depends on the (reduced) barrier height
and will become less important as the barrier height is
increased. Qualitatively we have seen that there isn’t
much difference between a cubic potential and a highly
asymmetric quartic potential and moreover, there is no
practical need to introduce a kink in the quartic case. We
expect the same to remain true also when dealing with
memory friction.

This paper was limited to one dimensional activated-
rate processes. There is however no practical problem of
generalizing the kink in the dividing surface to the multi-
dimensional case. It is also straightforward to introduce
the bent dividing surface in the presence of space depen-
dent friction. However, one may expect that for most re-
alistic systems this added complication is not necessary.
Except for cases with very low barriers or extreme asym-
metry (such as the cubic potential) the planar dividing
surface should suffice.
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APPENDIX A: DERIVATION OF EQ. (2.24)

The transmission coefficient [Eq. (2.9)] is defined as
the ratio of the rate constant I' to the one dimensional
rate I';p and so may be written in the form [cf. Egs.
(2.4), (2.5)]:

_ Jdpqda[l; dpe,dz;6(f)(Vf-P)O(Vf-p)e?"
Jdpqdq 11, dpz;dz;6(fo)(V fo-p)O(V fo-p)ePH
(A1)

]

where the Hamiltonian is the system bath Hamiltonian
given in Eq. (2.2). The dividing surface fo is the
plane perpendicular to the system coordinate, which goes
through the saddle point ¢ = z; =,...,z, = 0, that
is fo = q. The denominator in Eq. (A1) is therefore
B! I1; ;T"} The transmission coefficient now takes the
form

Py = 5(T] 52) [ dveda
J

x 1]dpzjdxjé(f)(Vf'p)o(Vf-p)e—ﬁ” :

J

(A2)

Using the definitions of the coordinates p and o as
given in Egs. (2.18) and (2.19), defining the correspond-
ing momenta
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Pp = aopq + Z @jPz; » (A3)

2
Qg
Po = arpq — ;f—I Z QjPz; » (A4)
J

Py = ﬂ(l?[ 52 [ dnpdodpodas(£)(V 5-R)B(T £ B)e™ 21 (py, .o, ),

where

J(pp, PsPos U) = /dpqdq H dpa:_,- dzje—B[H—V(q)]
J

and applying the identity

xJ(p — (aog + Zajzcj)) ) (a — (arg — % Z aja:j))
x4 (Pp — (aopq + Zajpz,-)) 5( o — (arpg — Z% Z ajP:,))

J

2

The frequency A and coupling constant C appearing
in the integrand are the same as defined in Egs. (2.11)
and (2.12), respectively. As a result the transmission
coefficient is simplified to

2 ~
Po= 5014 [ dp,dp dpedo 5(£)(V )0V f-p)e ™
(A8)
where
H = }[p + P + V(aop + a0))]
+14%[C(aop + aro) — p)?, (A9)

The bent planar dividing surface has been defined in
Eq. (2.22). The momentum perpendicular to the divid-
ing surface is

(Vf-p) = {p o ifo < oo (A10)

aoPp +arps, ifo 2 g9 -

Introduction of Egs. (2.22) and (A10) in Eq. (A8) leads
after several integrations to Eq. (2.24) which is the main
result of this paper.

B 2m —8(p2+p2+42%[(a0C—1)p+arCo)?
_—(];IE—J')G'IA‘? 2 (4 ° et )

1= / 0(z — zo)dz, (A5)

one may rewrite Eq. (A2) as
(A6)
(A7)

APPENDIX B: ANALYTIC ESTIMATES FOR
THE LOCATION OF THE KINK POINT

For Ohmic friction, we consider the two limits v —
0 and v — oo separately. When vy — 0, the barrier

frequency is pY wi, the coupling constant C ~ 1 + 53;

2
and the frequency A is A% ~ % In this case, the
integral in Eq. (2.25) may be estimated as 543 and
Eq. (2.25) may be written as

A2(C—1) = -lml :wi’(1+ gq—")

B1
go dg a1 (B1)

so that in the weak damping limit the kink point is at
=4

do = 3 -
In the overdamped limit, when a — oo one finds that

A~ 9:% and C ~ 2%0. In this case, the integral

in Eq. (2.25) can be estimated as FPC—(;FT) and Eq.
)
(2.25) is
22 a dV(q) 12 3 g0
)y _ = 1+=-=). (B2
AC(q0+9) dg g t qo(+2q1) (B2)

This leads to the strong damping estimate for the kink:

7,1
go ~ 37 g, ~ 0.85¢;.
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